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Abstract In this paper, we study a production system that operates under a lead-
time performance constraint which guarantees the completion of an order before a
pre-determined lead-time with a certain probability. The demand arrival times and
the service requirements for the orders are random. To reduce the capacity-related
operational costs, the production system under study has the option to use flexible
capacity. We focus on periodic capacity policies and model the production system as
a queuing system that can change its capacity periodically and choose to operate in
one of the two levels: a permanent capacity level and a permanent plus contingent
capacity level. Contingent capacity is supplied if needed at the start of a period, and
is available during that period, at a cost rate that is decreasing in period length in
different functional forms. Next, we propose a search algorithm that finds the capacity
levels and the switching point that minimizes the capacity-related costs for a given
period length. The behaviour of the capacity-related costs changes drastically under
different period lengths and cost structures. In our computational study, we observe
that the periodic capacity flexibility can reduce the capacity-related operational costs
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significantly (up to 35%). However, in order to achieve these savings, the period length
must be chosen carefully depending on ambition level and capacity-related costs. We
also observe that the percentage savings are higher for more ambitious lead-time per-
formance constraints. Moreover, we observe that the use of contingent capacity makes
the total system costs more insensitive to the lead-time performance requirements.

Keywords Production control · Capacity management · Lead-time management ·
Queuing theory · Transient analysis

1 Introduction

Customer service, one of the most important keys for success in today’s business world,
is a broad concept that entails many dimensions of customer satisfaction. Numerous
studies in the business literature highlight the importance of fast and reliable deliveries
in customer satisfaction (Ballou 1998). Therefore, speed has emerged as a determinant
factor of competitive advantage next to the price.

For highly customized products, production is mostly achieved through MTO
(make-to-order) or ATO (assemble-to-order) systems with little or no finished goods
inventory, where the lead-time arises as a medium of coordination to accomplish fast
and reliable deliveries. Lead time is often exploited as a marketing tool to signal a firm’s
commitment to its customers, resulting in a uniform lead time communicated in the
market. Examples of guaranteed uniform lead times in furniture, construction equip-
ment manufacturing and telecommunication field service industries are mentioned by
Rao et al. (2005).

In line with these trends, companies are inclined to set targets for uniform, short and
reliable lead times. Usually, these targets are considered beforehand as higher level
tactical issues which may further affect pricing decisions, market demand, capac-
ity/production planning and cash flows. These targets are then communicated to the
shop floor manager, who is expected to meet the targets at the lowest possible operating
costs.

In this context, we focus on a specific form of lead-time performance, which guar-
antees the completion of an order within a pre-determined lead time (e.g. 1 week) with
a certain (e.g. 95%) probability. Compared with other targets (e.g. average delivery
lead time), this performance target provides more certainty to the customers about
the completion time of an order. Therefore, before giving his/her order, the customer
can schedule other activities (like the preparation for the use of the product) during
the pre-determined lead time more efficiently and with more certainty. In a different
setting, the use of this form of performance targets is quite common in call centers, in
the shape of service level agreements (see, e.g. Gans et al. 2003).

Demanding markets mostly require ambitious lead-time performance targets. In our
study, a more demanding market either dictates a shorter lead time or a better on-time
delivery performance. As performance targets get more ambitious, more capacity is
needed, which leads to higher operating costs. Under these circumstances, flexible
capacity management can play a soothing role for the shop floor manager, who is

123



www.manaraa.com

Periodic capacity management under a lead-time performance constraint 223

stuck between the conflicting objectives of attaining ambitious lead-time performance
targets and reducing the operating costs.

Actually, in the presence of demand uncertainty, flexible capacity management can
be of high value to hedge against the under-utilization of deployed capacity. Empir-
ical studies show that flexible capacity management policies (e.g. flexible staffing,
under/over working hours, outsourcing) are commonly used in the manufacturing as
well as service industries (Houseman 2001; Kalleberg et al. 2003).

For various reasons, flexible capacity control practices in real life are often peri-
odic. First, a company’s reach to the external capacity pool may be restricted to certain
specific times like the start of a day or the start of a week. Second, decisions about
working times (e.g. working over/under time) are often taken on a periodic basis, in
order to abide to labour regulations and to accomplish the timely communication of
these working time decisions to the relevant employees. In addition, periodic flexi-
ble capacity policies are compatible with the modus operandi of resource planning
software systems, most of which also operate on a periodic basis due to decision-
information synchronization issues. For instance, a ground-handling company in Tur-
key uses a software system that creates weekly work schedules for its employees.
Within the software, weekly workforce size (in terms of total working hours) can
be adjusted based on the flight traffic. Similarly, a German car manufacturer and a
Dutch lighting equipment manufacturer make use of periodic capacity control tech-
niques such as hiring of temporary workers, implementing variable working hours,
employing multifunctional employees and shifting work internally in order to deliver
the customer orders on time. These capacity control actions are taken periodically, in
the most ambitious case, on a daily basis.1

Motivated by these observations, in this paper we analyse the periodic flexible
capacity control problem for a single production system in a MTO environment, which
operates under a fixed lead time and a delivery performance target. Customer orders
arrive according to a stationary Poisson process and each order requires a random
processing time. We assume that the processing time is inversely proportional to the
total capacity of the system. For the sake of convenience and practicality, we assume
two levels of capacity: permanent and permanent plus contingent capacity levels.

At the start of each period, the shop floor manager decides whether to deploy the con-
tingent capacity for that period or not. The contingent capacity is available and ready
to be deployed at the start of each period before the manager’s decision. This decision
is based on the workload in the system at the decision instant. Uncertainty on the use of
the reserved contingent capacity in a period creates an opportunity cost, which makes
per time unit cost for contingent capacity always larger than that of the permanent
capacity. This opportunity cost decreases with period length, because a longer period
length implies an improved job security for contingent capacity resources. The reflec-
tion of improved job security/working conditions on wages is a well-studied topic in
labour economics (see, e.g. Ehrenberg and Smith 1994).

For a given permanent/contingent capacity cost structure, the shop floor manager
tries to minimize capacity-related operating costs while satisfying the communicated

1 The company names are not mentioned for confidentiality.
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lead-time performance constraint, which is an indicator of how demanding the market
is. Decision variables are the period length, the size of the permanent capacity, the
size of the contingent capacity and the workloads at which the contingent capacity is
deployed.

In order to analyse this problem, we develop a queuing model, where the periodic
capacity policy is reflected in the change of the service rate. At the start of each period,
the service rate of the queue is set to either high or low level based on the number
of orders in the system. The low service rate corresponds to the permanent capacity
level whereas the difference between the high and low service rates corresponds to
the contingent capacity level. Per time unit cost for permanent capacity is fixed and
per time unit cost for contingent capacity is the sum of permanent capacity cost and
the opportunity costs per time. We provide several functional forms for the opportu-
nity cost per time; all are decreasing with the period length and depending on two
additional parameters: the maximum value of the opportunity and the decrease of the
opportunity cost with period length. Subsequently, we use a computational approach
to assess the performance of two-level, threshold type, periodic capacity policies under
various decision frequencies (period lengths) and permanent/contingent capacity cost
structures for three markets with different demands on lead-time performance. The
results show under which conditions substantial savings can be obtained and highlight
the importance of the decision on the period lengths for the cost performance of the
shop floor. Finally, we assume the case in which setting up and running a flexible
capacity system comes at a cost. In such a case, we investigate the cost circumstances,
where the deployment of a flexible capacity policy is more beneficial compared to the
best fixed capacity system.

The remainder of the paper is organized as follows: In Sect. 2, we present an over-
view of the relevant literature that paved our way to this study. Section 3 discusses the
specifications of the model, the cost structure of the permanent and contingent capac-
ity costs and the formulation of the problem. In Sect. 4, we provide the analysis of the
production system under a two-level periodic capacity policy for a given period length.
Subsequently, we present and discuss some computational results in Sect. 5. Finally
in Sect. 6, concluding remarks and a discussion on future research are presented.

2 Literature review

Decisions on capacity investment are first studied in Economics/Econometrics lit-
erature as capacity investment problems. (see, e.g. Chenery 1952; Eberly and
van Mieghem 1997).

Holt et al. (1960) were the first to address the problem of the coordination of pro-
duction and capacity decisions, and they develop the aggregate planning model, in
which the production, inventory and workforce decisions (such as hiring/firing and
over time/under time working hours) are taken for a finite horizon based on forecasted
demand over that horizon.

Pinker (1996), Milner and Pinker (2001) and Pinker and Larson (2003) develop
models with different types of flexible capacity arrangements (such as contingent
labour contracting or overtime working hours) in the presence of demand/supply
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uncertainty over a finite discrete-time horizon. In these studies, different stochastic
dynamic programming models are presented in order to obtain the optimal decisions
on the capacity levels.

Later studies extend the problem to integrated capacity and inventory control.
Bradley and Glynn (2002) provided a Brownian motion approximation to study the
joint optimal control of the inventory and the capacity in a make-to-stock system with a
subcontracting option. Similarly, Tan and Alp (2009) use stochastic dynamic program-
ming formulations for the integrated capacity and inventory management problem of
a make-to-stock system.

Tan (2004) and Tan and Gershwin (2004) provide a modelling framework for the
production and subcontracting control problem with limited capacity and volatile
demand environment. They analyse their models as stochastic flow rate control prob-
lems. Different factors such as the availability guarantee of the subcontractor or the
backlog-dependent demand structures are incorporated to their models, as well.

If a production system is modelled as a queuing system, the service rate of the queue
can be interpreted as the capacity level. Mostly, stochastic dynamic programming for-
mulations are utilized in order to determine the optimal service rates of the queuing
systems with the help of the uniformization technique (Lippman 1975). Sennott (1999)
provides a comprehensive overview of the usage of stochastic dynamic programming
in queuing systems for different control aspects.

Due date management is a very broad research area with sheer number of studies
and many dimensions (see, e.g. Keskinocak and Tayur 2004). Up to now, due-date per-
formance metrics are largely neglected in dynamic queuing control literature. There
are only a few studies that incorporate average lead-time performance metrics into the
capacity control problem (see, e.g. Mincsovics and Dellaert 2009). In order to cal-
culate other due-date performance metrics than the average performance, the sojourn
time distribution of an order is needed, and it is quite difficult to reflect the effects of
the capacity control mechanism on the actual sojourn time distribution.

It is still an open problem to determine the structure of an optimal periodic capac-
ity control policy with due-date performance metrics. In this paper, we do not tackle
this problem but rather follow a prescriptive approach for the periodic capacity pol-
icy structure. We are not aware of any previous work on the use of periodic capacity
management in a MTO system in the presence of congestion effects and lead-time
performance targets. The main contributions of this paper can be listed as follows:

a. Different from many other studies; we focus on periodic capacity control, which
requires the modelling of a queuing system that changes its service rate period-
ically according to a workload threshold policy. Therefore, period length arises
both as a decision variable and as a dimension of a system’s flexibility measure.

b. We reflect the effects of the period length on per time unit contingent capacity
costs due to the improved job security in line with the theory of compensating
differentials (Rosen 1986).

c. Rather than a performance target on the average lead time, we study a MTO sys-
tem that operates with a fixed lead time and a delivery performance target, which
gives more certainty about the order delivery time to the customers before they
give their order.
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In the next section, we present the modelling approach of our system and formulate
the problem that the shop floor manager is facing.

3 A periodic two-level service rate control policy

The production system under study is modelled as a single-server queue which faces a
stationary Poisson demand. The arrival rate at the system is equal to λ, and each order
admitted requires an exponentially distributed amount of service time. The production
system operates under a lead time L and an on-time delivery target γ. This requires
that each order should be completed within L units of time with a probability of γ. At
the start of each period of length T, the number of orders in the system is observed
and according to this number, the service rate is adjusted based on a certain policy.

Simple capacity policies, such as two-level policies, are highly valued by the prac-
titioners because of their operational simplicity. In a two-level capacity policy, per-
manent capacity is the capacity that is always employed in the system and contingent
capacity is either temporarily outsourced from an external supplier or achieved by
the efforts of in-house capacity (e.g. working over-hours). Both of these measures are
modelled in this paper as a change in the service rate of a single server queue.

Motivated by the optimality results in queuing control literature (i.e. threshold-
type policies are optimal in many problems where there is no capacity switching
costs, Crabill 1972), we focus on two-level threshold type periodic capacity policies
in this paper. However, the analysis provided in this section can be extended to any
type of workload-dependent periodic capacity policy.

A two-level, threshold type capacity policy π(k, μl, μh) consists of a switching
point k, which is a positive integer, and a low and high service rate pair (μl, μh). In
such a policy, μl can be interpreted as the permanent capacity level and the μh −μl can
be interpreted as the contingent capacity level. For stability, we assume that μh > λ.

At the start of each period, the number of orders in the system is observed. The
contingent capacity is deployed for a period if the number of orders in the system
is greater than or equal to the switching point k at the start of that period. Figure 1
illustrates the system under study.

Fig. 1 Illustration of the system under study
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3.1 Modelling the capacity-related costs

In order to supply the required amount of capacity for each period, the contingent
capacity supplier has to be prepared at the start of each period before the decision
is taken. Although contingent capacity is ready to be deployed at the start of each
period, it is not guaranteed whether it will be used, since its use is dependent on the
number of orders in the system at the start of each period, which cannot be known in
advance with certainty. The uncertainty on the use of the contingent capacity creates
an economic factor that causes an opportunity cost, because that capacity could be
used somewhere else if it was not reserved for that period.

A longer period length T mitigates the severity of the lost opportunity effects due
to the contingent capacity availability at the start of each period because it gives more
room to the capacity supplier to benefit from the possibility of re-assigning the contin-
gent capacity for other tasks until the start of the next period. Also, a longer T implies
an improved job security for the contingent capacity, which would decrease per time
unit contingent capacity costs. These effects are in line with the wage differential
theory, a research area in Labour Economics that analyses the relations between the
wage rate and the unpleasantness, risk or other undesirable attributes of a particular
job (Rosen 1986).

Suppose cp denotes the usage cost per unit time for the permanent capacity, cc
denotes the usage cost per unit time for the contingent capacity and oc denotes the
opportunity cost per unit time due to the reservation of the contingent capacity in each
period. We assume that cp is fixed and cc is the sum of cp and oc. The opportunity cost
oc is always greater than or equal to zero and it decreases with the period length. We
propose three different functional forms for oc. Note that other functions (which can
be constructed after an empirical investigation) can be used to model the opportunity
costs per unit time, as well.

All proposed functions depend on two more additional parameters: � and α. � > 0
represents the maximum opportunity cost per time unit due to the availability of the
contingent capacity at the start of each period, and α > 0 reflects the decreasing rate
of the opportunity cost with period length. The proposed functions can be seen in
Table 1. For these suggested functional forms of oc, the effects of � and α on cc are
illustrated in Fig. 2.

Suppose the system operates under a stable policy π(k, μl, μh) for infinite
horizon. Let ACU(π(k, μl, μh), T ) denote the average capacity usage and ACC
(π(k, μl, μh), T ) denote the average capacity-related cost resulting from capacity
policy π(k, μl, μh) with period length T .

For given cc and cp values, ACC(π(k, μl, μh), T ), can be directly derived from
ACU(π(k, μl, μh), T ):

Table 1 Opportunity cost
functions

Name of the function oc(�, α)

1. Linear (� − αT )+
2. Inverse proportional �/(1 + αT )

3. Exponential �e−αT
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Fig. 2 The figures on the top depict the behaviour of cc for α = 1 and � = 0, 1, 2, 5. The figures on the
bottom depict the behaviour of cc for � = 2 and α = 0, 1, 5, 10, 100. Right to the left: oc is of the linear,
inverse proportional and exponential forms

ACC(π(k, μl, μh), T ) = μl × cp + (ACU(π(k, μl, μh), T ) − μl) × cc (1)

3.2 Problem formulation

For a given permanent labour cost per unit time cp, and given �,α coefficients,
the shop floor manager tries to minimize the average capacity costs while satisfy-
ing the lead-time constraint with probability γ. In order to achieve the minimum
ACC(π(k, μl, μh), T ), the shop floor manager has to decide on the following deci-
sion variables:

1. Length of the period: T
2. The size of the permanent and the contingent capacity levels: μl & μh
3. The switching point k to decide on the use of the contingent capacity.

Let the random variable S(π(k, μl, μh), T ) denote the throughput time of an order in
a MTO system under policy π(k, μl, μh) with a period length T . The optimization
problem can be formulated as follows:

min
T ,μh,μ l,k

ACC(π(k, μ1, μh), T )

s.t.
P(S(π(k, μ1, μh)T ) > L) ≤ 1 − γ

(2)

Calculation of the ACC(π(k, μl, μh), T ) using Eq. 1 necessitates the steady state
probability vector of the number of the orders at the start of a period in the system.

123



www.manaraa.com

Periodic capacity management under a lead-time performance constraint 229

Each capacity policy results in a different throughput time distribution. In order
to check whether a capacity policy satisfies the lead-time performance constraint, the
distribution of the throughput time of an order is needed under that capacity policy.
The structure of the lead-time performance target requires the percentile information
of the throughput time distribution. This detailed information cannot be extracted from
Little’s Law (Little 1961), which gives information about the average throughput time.
Bounds from average throughput time (e.g. by using Markov Inequality) can be used;
however, we prefer to follow a constraint satisfaction approach, since satisfying the
lead-time performance constraint with the minimum capacity lies in the core of the
MTO’s responsibilities. In the next section, we analyse the model under study and
provide the steps needed to calculate ACC(π(k, μl, μh), T ) as well as the distribution
of S(π(k, μl, μh), T ).

4 Analysis

4.1 Steady-state probabilities of the number of orders at the start of a period

In this subsection, we derive the steady-state probability vector of the number of orders
at the start of a period for the production system under study.

Note that in the remainder of the paper, throughput time distribution is denoted
as the sojourn time distribution and S(π, T ), ACU(π, T ) and ACC(π, T ) are used as
the shortened versions for the expressions: S(π(k, μl, μh), T ), ACU(π(k, μl, μh), T )

and ACC(π(k, μl, μh), T ), respectively.
The production system that operates under periodic capacity policy π(k, μl, μh)

with a period length T, has a switching point k, low (permanent) service rate μl and
the high (permanent + contingent) service rate μh.

Without any constraints on the waiting room capacity, the formulas needed to ana-
lyse the system would contain infinite sums of Bessel functions, which would make
the numerical computations more time-consuming and difficult. However, it is known
from the literature (see, e.g. Stern 1979) that the transient behaviour of a Markovian
queue with an infinite waiting room can be approximated with that of the same queue
but with a finite waiting room. Hence, we model the system as an M/M/1/K queue
with periodically adjustable service rates. The accuracy of the approximation is of
course dependent on the size of the waiting room K .

Let X (t) denote the number of orders present at time t. The service rate is set to
μl(μh) at the start of period number n = 1, 2, . . . if X ((n−1)T ) < k (if X ((n−1)T ) ≥
k). When the service rate is set to μl(μh), the behaviour of X (t) in this dynamic system
is identical to the behaviour of the number of orders at time t (t < T ) in a system with
a constant service rate with μl (μh). Therefore, we first analyse the transient behaviour
of the X (t) with a constant service rate.

Let Pi j (t, μ) be the probability that there will be j orders at time t given that there
are i orders at time “0”, under constant service rate of μ. We use numerical methods
for the computation of the Pi j (t, μ) values, which are available in the literature (see,
Kulkarni 1999; Ledermann and Reuter 1954).
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The derivation of the Pi j (t, μ) holds for an arbitrary t for a system with a constant
service rate μ. Now, consider our system, which operates under the periodic capacity
policy π(k, μl, μh) with a period length T . Recall that we are interested in the number
of orders at the capacity adjustment points, which is denoted as X (nT ).

Remark 1 For any period length T, the number of orders at the beginning of each
period, X (nT ), satisfies the Markov property.

Let P(T, π) denote the transition probability matrix of the X (nT ) process for
n = 0, 1, . . . under the capacity policy: π(k, μl, μh). Pi j (T, π) is the probability
that there will be j orders at the end of the period, given that there are i orders at the
start of that period.

If there are i < k orders at the start of a period, the service rate is updated to μl and
it is updated to μh otherwise. The service rate that is updated at the start of a period
remains the same until the end of that period.

If we define �Pi (T, π) = (Pi0(T, π), Pi1(T, π), . . . , Pi K (T, π)), as the i th row of
P(T, π), then we can say �Pi (T, π) = �Pi (T, μl) for i < k and �Pi (T, π) = �Pi (T, μh)

for i ≥ k.

If �Pi (T, π) is obtained when μ = μl(μ = μh) and t = T for i < k (for i ≥ k),
then we can obtain P(T, π), which is the transition probability matrix of X (nT ) under
π(k, μl, μh). Let v(T, π) be the steady-state vector of the probabilities of the number
of orders in the system at the start of a period under policy π(k, μl, μh) with period
length T . After deriving P(T, π), the v(T, π) vector can now easily be obtained from
the following equalities:

v(T, π) = v(T, π)P(T, π),

K∑

i=0

vi (T, π) = 1 (3)

Having the steady-state probability vector v(T, π), we can calculate the average capac-
ity usage of the policy π(k, μl, μh) with period length T :

ACU(π, T ) =
k−1∑

i=0

μl × vi (T, π) +
K∑

i=k

μh × vi (T, π) (4)

4.2 Sojourn time distribution of an arriving job

In order to satisfy the lead-time performance constraint, we need the sojourn time
distribution of an arriving order. To derive an explicit formula for the sojourn time dis-
tribution of an order, we first define an extended Markov Process, (X (t), Y (t)), where
X (t) denotes the number of orders in the system at time t, just like in the previous
section, and Y (t) denotes the position of a tagged order in the queue (including the
order that is being processed) at time t.

Let Z denote the set of all states of the stochastic process (X (t), Y (t)). Then |Z | =
(K+3)K

2 is the cardinality of Z because the total number of states is equal to
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|Z | = 1 + 2 + · · · + K + (K + 1) − 1 = (K + 1)(K + 2)

2
− 1 = K (K + 3)

2
.

Further analysis of the (X (t), Y (t)) process under a constant service rate is given in
Appendix.

Since the transient probability matrices for the (X (t), Y (t)) process under low
(Ul(t)) and high (U h(t)) service rates are obtained in Appendix, the transient prob-
abilistic behaviour of the (X (t), Y (t)) process under the periodic capacity policy
π(k, μl, μh) can be characterized for t ≤ T, as well.

Now, we focus on the (X (t), Y (t)) process under policy π(k, μl, μh) at the start of
each period (t : t = nT for n = 0, 1, 2, . . .). Note that the (X (nT ), Y (nT )) process
has the following property for n = 1, 2, . . .

Remark 2 For any period length T, (X (nT ), Y (nT )) also satisfies the Markovian
property, similar to X (nT ) that is defined in Remark 1.

Now, let A(T, π) be the |Z| × |Z| transition probability matrix of (X (nT ), Y (nT ))

process under capacity policy π(k, μl, μh) with period length T and for positive
integer n values.

Ar,s(T, π)= P((X ((n + 1)T ), Y ((n + 1)T ))=(s1, s2)|(X (nT ), Y (nT ))=(r1, r2))

for r = (r1, r2) and s = (s1, s2) where r, s ∈ Z.

We can describe Ar,s(T, π) as the probability that the system will be in state
s = (s1, s2) at the end of a period (which means there will be s1 orders in the system
and the tagged order’s position will be s2), given that the system is at state r = (r1, r2)

at the start of that period (which means there are r1 orders in the system and the tagged
order’s position is r2).

From the definition of the Ul(t) and U h(t) matrices, we have Ar,s(T, π) = Ul
r,s(T )

if r1 < k and Ar,s(T, π) = U h
r,s(T ) if r1 ≥ k for all r = (r1, r2) ∈ Z. Hence, the

A(T, π) matrix can be easily constructed from Ul(T ) and U h(T ) matrices.
Let S(π, T ) denote the sojourn time of an arriving order under policy π and per-

iod length T . After analysing the transient behaviour of (X (t), Y (t)) process under
policy π and period length T, we can start deriving P(S(π, T ) > x) for an arbitrary x .

The sketch of our method is as follows: Suppose it is known that there has been an
arrival in a period. For the sake of the convenience, let origin denote the start of the
period that the order arrives. If the number of orders in the system at the origin is less
than k, the initial service rate is equal to μl; otherwise, it is equal to μh.

Let t denote the time between the arrival of the order and the end of the first period
after the arrival. From the conditional distribution of the arrival times (Ross 1996), it is
known that the arrival time of an order (T −t) is uniformly distributed over (0, T ). If an
arrival occurs between (0, �x/T �∗ T − x) in a period, then the duration x spreads over
�x/T � consecutive periods, whereas if the arrival occurs between (�x/T �∗ T − x, T ),

then x spreads over �x/T � + 1 periods.
Hence, for any x, the initial state belongs to one of these events: (1) x spreads over

�x/T � periods and initial service rate is μl; (2) x spreads over �x/T � periods and
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initial service rate is μh; (3) x spreads over �x/T � + 1 periods and initial service rate
is μl; and (4) x spreads over �x/T � + 1 periods and initial service rate is μh.

For each of these event spaces, the probability vector for the number of orders that
an arriving order finds in the system upon its arrival is generated. If an arriving order
finds j orders ( j < K ) in the system, the extended state of the system, (X (T − t),
Y (T − t)), upon that arrival will be ( j +1, j +1) and the transient behaviour is traced
throughout x from that arrival point.

Note that if an order finds K other orders in the system, that arriving order is not
accepted. Let R denote the probability of such an event. R can be calculated from

R =
k−1∑

i=0

1

T
vi (T, π)

T∫

t=x

Pi K (T − t, μl)dt +
K∑

i=k

1

T
vi (T, π)

T∫

t=x

Pi K (T − t, μh)dt .

(5)

While deriving P(S(π, T ) > x) we condition the probability that an arriving order
is accepted. Arbitrarily small values of R can be obtained by taking large enough K .

The mathematical formulation of the above sketch is given in Theorem 1.

Theorem 1 P(S(π, T ) > x) for 0 ≤ x < T can be written as

1

T (1 − R)

∑

i=h,l

∑

j=1,2

P (S (π, T) > x|i, j) (6)

where

P (S (π, T) > x|l, 1) =
k−1∑

i=0

vi (T, π)

K−1∑

j=0

T∫

t=x

Pi j (T − t, μl) F̄ ( j+1)
l (x)dt

P (S (π, T)>x|l, 2)=
k−1∑

i=0

vi (T, π)

K−1∑

j=0

x∫

t=0

Pi j (T −t, μl) �Ul
( j+1, j+1)(t)

�̄F(x−t)Trdt

P (S (π, T) > x|h, 1) =
k∑

i=k

vi (T, π)

K−1∑

j=0

T∫

t=x

Pi j (T − t, μh) F̄ ( j+1)
h (x)dt

P (S (π, T)>x|h, 2)=
k∑

i=k

vi (T, π)

K−1∑

j=0

x∫

t=0

Pi j (T −t, μh) �U h
( j+1, j+1)(t)

�̄F(x−t)Trdt

In a similar manner, P(S(π, T ) > x) for (n − 1)T ≤ x < nT if n ≥ 2 can be written
as follows:

1

T (1 − R)

∑

i=h,l

∑

j=n,n+1

P (S(π, T ) > x |i, j) (7)
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P (S (π, T ) > x |l, n) =
k−1∑

i=0

K−1∑

j=0

vi (T, π)

×
T∫

t=x−(n−1)T

Pi, j (T − t, μl) �Ul
( j+1, j+1)(t)A (T, π)n−2 �̄F (x − (n − 2)T − t)Tr dt

P (S (π, T ) > x |l, n + 1) =
k−1∑

i=0

K−1∑

j=0

vi (T, π)

×
x−(n−1)T∫

t=0

Pi, j (T − t, μl) �Ul
( j+1, j+1)(t)A (T, π)n−1 �̄F (x − (n − 1)T − t)Tr dt

P (S (π, T ) > x |h, n) =
K∑

i=k

K−1∑

j=0

vi (T, π)

×
T∫

t=x−(n−1)T

Pi, j (T − t, μh) �U h
( j+1, j+1)(t)A (T, π)n−2 �̄F (x − (n − 2)T −t)Tr dt

P (S (π, T ) > x |h, n + 1) =
K∑

i=k

K−1∑

j=0

vi (T, π)

×
x−(n−1)T∫

t=0

Pi, j (T − t, μh) �U h
( j+1, j+1)(t)A (T, π)n−1 �̄F (x − (n − 1)T − t)Tr dt

Where aTr is the transpose of vector a,

�Ul
( j+1, j+1)(t) =

(
Ul

( j+1, j+1),s1(t), Ul
( j+1, j+1),s2(t), . . . , Ul

( j+1, j+1),s|Z |(t)
)

,

�U h
( j+1, j+1)(t) =

(
U h

( j+1, j+1),s1(t), U h
( j+1, j+1),s2(t), . . . , U h

( j+1, j+1),s|Z |(t)
)

,

�̄F (x) =
(

I
(

s1
1 , s1

2 , k, x
)

, I
(

s2
1 , s2

2 , k, x
)

, . . . , I
(

s|Z |
1 , s|Z |

2 , k, x
))

for I (i, j, k, x) = F̄ j
l (x) = P(B > x) where B ∼ Erlang( j, μl) for i < k and

I (i, j, k, x) = F̄ j
h (x) = P(B > x) where B ∼ Erlang( j, μh) for i ≥ k.

Note that the sth element of �Ul
( j+1, j+1)(t) ( �U h

( j+1, j+1)(t)) above denotes the prob-
ability that after t time units from the order arrival, the number of total orders will be
s1, (X (T ) = s1), and the position of the order which has arrived at time T − t will
be s2, (Y (T ) = s2), for μ = μl (μ = μh) . The formula in Eq. 7 generalizes the
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formula given in Eq. 6 for S > T by keeping the track of the extended state of an
order throughout a period with the help of the A(T, π) matrix.

As the sojourn time distribution of an order is derived, we can incorporate this
result with the lead-time performance constraint. As explained before, in a lead-time
performance constraint with a lead time L , the on-time delivery target 0 < γ < 1
guarantees that the proportion of jobs whose throughput time is more than L will
not exceed 1 − γ. Therefore, the lead-time performance constraint under a periodic
capacity policy π(k, μl, μh) can be expressed as

P(S(π, T ) ≤ L) ≤ γ.

4.3 Randomized switching option

From Stochastic Optimization Theory, we know that for unconstrained MDP prob-
lems, there exists a nonrandomized optimal policy. However when the problem
is constrained, randomized action taking in some states can yield a better result
(Puterman 1994). Since the problem under study is a constrained problem (due to
the imposed lead-time performance constraint); the randomized action taking should
be included to the capacity control policy.

Therefore, in this subsection we introduce the randomized switching point notion.
A randomized switching point can be introduced to an existing non-randomized policy
π(k, μl, μh) via a probability factor p. Due to the randomized switching option, the
switching point is no longer an integer point, but can be any positive real number.

In the two-level capacity policy π(k, μl, μh) that was analysed so far, the service
rate is set to μl if there are less than k orders in the system at the start of a period;
otherwise it is set to μh. Now in the randomized policy π(k, μl, μh) with probability p,

if there are exactly k orders in the system at the start of a period, the service rate of the
system is μh with probability p, and μl with probability 1 − p. On the other hand, if
there are less (more) than k orders, the service rate is set to μl (μh). Such a randomized
switching in a two-level threshold policy can be interpreted such that, instead of k,

the new switching point is p(k − 1) + (1 − p)k.

Incorporating the randomized switching at state k to the analysis can be achieved
as follows: Under the non-randomized policy, when there are k orders at the start of
a period, a service rate of μh is used during the derivation of the expressions from
Sects. 4.1 and 4.2. Let g(k, μh) denote one of these expression in question. Under the
randomized policy, when there are k orders, each g(k, μh) should be replaced with
the weighted average of the same expression with service rates μl and μh. Mutatis
mutandis, when there are k orders, (1 − p)g(k, μh)+ pg(k, μl) should be used rather
than g(k, μh) during the calculations under the randomized policy.

After the necessary expression updates are completed, ACU(π, T ) with switching
probability p can be re-obtained as follows:

ACU(π, T ) = μl + (μh − μl)

(
K∑

i=k+1

vi (T, π) + (1 − p) × vk(T, π)

)
(8)
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In the next section, we use the results from this section to determine the benefits that
can be obtained from employing a periodic, two-level capacity policy as a function of
lead time and lead-time performance requirement on the one hand, and the additional
costs of deploying flexible capacity policy as a function of period length due to the
opportunity cost factors � and α., on the other hand.

5 Computational study

This section consists of three subsections. In Sect. 5.1, we describe the computational
study and explain how we decide on the best policy parameters under certain lead-
time performance requirement (L , γ ) and opportunity cost function oc(�, α). Before
giving cost results/comparisons, in Sect. 5.2, we discuss the interrelations among the
system and policy parameters, like the interrelations between L and the period length T
and the impact of the randomized policies. Finally, in Sect. 5.3, we present the savings
in operating costs when the best flexible periodic capacity is employed compared with
the best fixed capacity. These savings infer the (�,α) regions where the use of flexible
capacity policies would still be preferable if there was an additional fixed cost rate for
the set up and operating of the periodic capacity policy.

5.1 Design of the computational study and search for the best policy parameters

In our computational study, we normalize the arrival rate, λ = 1 (customers per time
unit) and also the permanent capacity cost per time unit, cp = 1. We investigate three
markets with different demands on lead-time performance (L =10 and γ =0.90, L =5
and γ =0.90, L =5 and γ = 0.95), which represent increasing levels of ambition.

As mentioned before, we approximate the real system with a system having a finite
waiting room of size K . Naturally, the quality of approximation highly depends on
the choice of K . In our experiments we take K between 50 and 60. We have several
means to validate the accuracy of K . One of them is the R value that is presented just
before Theorem 1 in Sect. 4.2. In our experiments, all parameter combinations yield
an R value that is practically equal to zero. Another alternative to assess the quality of
the choice of K can be to compare the steady-state solutions of the number of orders
at the start of a period under increasing K values. The change in the steady-state
solutions should become negligible after some K value. We observe this behaviour in
our studies, as well.

For a given lead time L and a performance level γ, we first determine the optimal
capacity level for the reference case with constant capacity. Let μL ,γ denote this
capacity level. From the sojourn time properties of the M/M/1 queue, μL ,γ can

be found analytically from μL ,γ = λ − ln(1−γ )
L . From μL ,γ and λ = cp = 1,

we can find the minimum cost rate for the constant capacity as a reference point:
cpμL ,γ = μL ,γ = 1 − 1

L ln(1 − γ ). In addition, μL ,γ level plays an important role
in determiningμl and μh levels for the periodic capacity policy. These levels should
satisfy μl ≤ μL ,γ ≤ μh. Otherwise, either the constraint P(S(π, T ) ≤ L) ≤ γ is not
satisfied or ACU(π, T ) becomes unnecessarily high.
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For a given lead-time performance constraint (L , γ ) and a given opportunity cost
function oc(�, α), the shop floor manager has to decide on the period length T,

permanent and contingent capacity levels μl and μh −μl, and the switching point k to
switch from high to low service rate (or vice versa). The corresponding optimization
problem cannot be solved with standard optimization techniques since the objective
function and the sojourn time distribution are to be derived numerically for every new
policy. Therefore, we propose a search method to find the best policy parameters.

Before starting the search, for a given L and γ, we first create the ϒl =
{μl1, μl2, μl3, μl4, μl5} and ϒh = {μh1, μh2, μh3, μh4, μh5} sets for candidate μl

and μh levels, where μli = i×μL ,γ

6 and μhi = μL ,γ + μli for all i = 1, 2, . . . , 5.

Similarly, for every problem instance, we have a set of candidate period lengths, θ,

which are the integer multiples of 0.5 up to L . After an μl level from ϒl and an μh
level from ϒh, and a candidate period length T from θ are chosen, the corresponding
switching point k∗(μl, μh, T ) is found from the following sub-problem:

min
k

ACC(π(k, μl, μh), T )

s.t.
P(S(π(k, μl, μh), T ) > L) ≤ 1 − γ

(9)

From Eq. 1, it can be seen that ACC(π(k, μl, μh), T ) is increasing with
ACU(π(k, μl, μh), T ). In all of our computational results, we observe the following:

• For given μl, μh and T, ACU(π(k, μl, μh), T ) is non-increasing in k.

• For given μl, μh and T, P(S(π(k, μl, μh), T ) > L) is non-decreasing in k.

These aforementioned behaviours of ACU(π(k, μl, μh), T ) and P(S(π(k, μl, μh),

T ) > L) can be seen in Fig. 3 for λ = 1, μl = 0.24342, μh = 1.7039, γ = 0.9, L = 5
and T = 2 for increasing levels of real k values.

Assuming the aforementioned monotonicity of ACU(π(k, μl, μh), T ) and P
(S(π(k, μl, μh), T ) > L), from the KKT conditions, we can state that the opti-
mal switching point k∗(μl, μh, T ) is the largest possible switching point that satisfies
P(S(π(k, μl, μh), T ) > L) ≤ γ.After finding k∗(μl, μh, T ) for allμ1 ∈ϒ1, μh ∈ϒh
the best policy π∗(T ), for a given period length T ∈ θ can be found via brute force
search:

ACU(π∗(T ), T ) = min
μl∈ϒl,μh∈ϒh

{ACU(π(k∗(μl, μh, T ), μl, μh), T )}

Finally, the best period length and the minimum achievable costs can be found:

T ∗ = arg min
T ∈θ

{ACC(π∗(T ), T )}

Due to randomized policies, we can have non-integer switching point values which
enables the system to meet the lead-time performance constraints more tightly (in the
ideal case with equality) with less average capacity usage. In our numerical study,
we restrict switching points to be integer multiples of p = 0.1. Suppose k∗

N R is the
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Fig. 3 The figures above depict how ACU(π(k, μl, μh), T ) and P(S(π(k, μl, μh), T ) > L) behave
for increasing levels of switching points (k is not necessarily an integer due to the randomization) when
λ = 1, μl = 0.24342, μh = 1.7039, γ = 0.9, L = 5 and T = 2

optimal switching point to (8) when k can only be an integer and k∗
R is the optimal

switching point when k is an integer multiple of 0.1. In Table 2, we present the average
percentage increase in average capacity usage (ACU) due to using non-randomized
policies for every (L , γ ) and T, which can be derived from

100 ×
∑

μl∈ϒl,μh∈ϒh

[
ACU

(
π

(
k∗

N R (μl, μh, T ) , μl, μh
)
, T

) − ACU
(
π

(
k∗

R (μl, μh, T ) , μl, μh
)
, T

)]

25
.
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Table 2 Mean percentage increase in ACU when non-randomized policies are used under different T L
values and lead-time performance constraints

T/L 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 1

L = 10, γ = 0.9 0.21 0.25 0.38 0.43 0.53 0.60 0.93 0.84 0.85 1.05
L = 5, γ = 0.9 1.12 1.38 1.78 1.89 2.15 3.05 2.50 2.58 3.77 2.85
L = 5, γ = 0.95 1.41 1.94 2.56 2.37 2.90 2.74 2.62 4.04 4.06 5.44

From Table 2, it can be observed that the use of randomized policies bring more
savings in ACU for more ambitious lead-time performance constraints and larger
period lengths. These values in Table 2 constitute a lower bound for the increase
in ACC, since the savings of randomized policies are the savings from contingent
capacity usage and the cc is at least same as or more expensive than cp.

5.2 Interrelations between the system and policy parameters

In this subsection we discuss the interrelations between the system parameters and
the optimal policy parameters. From the numerical studies, we observe that, when the
other parameters are the same, the optimal switching point k∗(μl, μh, T ) increases
with μl and μh but decreases with the ambition level of the lead-time performance
constraint and the period length T . Since k∗(μl, μh, T ) is determined only from the
policy parameters and the lead-time performance constraint, cost parameters such as
� and α do not affect the choice of the switching point.

Next, we investigate the effects of period length and capacity costs on the choice
of permanent capacity levels. From our computational study, we observe that the
production system tends to employ less permanent capacity (μl) for smaller T, smaller
� and larger α values. This behaviour can be explained as follows: as the opportunities
to update the capacity become more frequent and less costly, hiring contingent capacity
temporarily becomes more attractive than deploying permanent capacity.

Subsequently, we discuss the interrelations between L and T and their impacts on
ACC(π∗(T ), T ) under different opportunity cost parameters (�,α) when oc(�, α) =
�/(1 + αT ). In our periodic capacity control framework, (L/T ) value arises as a
flexibility metric that shows the number of capacity update opportunities during the
lead-time L . In the presence of opportunity costs, more update opportunities come at
a higher price.

We first investigate the effects of �, the maximum value of the opportunity, on
the capacity-related costs. Figure 4 shows the minimum capacity costs for each of the
three lead-time performance constraints with a constant α, (α = 1) and different �

values (� = 0, 0.5 and 1) as a function of period length: ACC(π∗(T ), T ).

We can see in Fig. 4 that minimum capacity costs with positive � are higher than
minimum capacity costs with � = 0, but lower than cp∗μL ,γ for every period length
T under all three lead-time performance constraints.

In each of the three lead-time performance constraints, when period length T gets
close to L , we observe that ACC(π∗(T ), T ) values with � = 0.5 and � = 1 almost
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Fig. 4 ACC(π∗(T ), T ) for increasing T under three lead-time performance constraints when cp =1, α=1
and � = 0, 0.5, 1. (from left to the right ambition level of the lead-time constraint increases)

Table 3 T ∗ for different �

when cp = 1 and α = 1 under
three lead-time performance
constraints

� = 0 � = 0.5 � = 1

L = 10, γ = 0.9 0.5 4 5
L = 5, γ = 0.9 0.5 1.5 1.5
L = 5, γ = 0.95 0.5 1 1.5

overlap with that of ACU(π∗(T ), T ). The gaps between ACC(π∗(T ), T ) with differ-
ent � values are biggest for the smallest possible period length (T = 0.5), due to the
structure of the contingent capacity cost function.

Note that for the low-ambition lead-time performance constraint (L =10, γ = 0.9),
when � > 0, the minimum capacity costs with the shortest period length are higher
than the minimum capacity costs with the longest period length. On the other hand, for
the higher-ambition settings, we observe the opposite. As the lead-time performance
constraint becomes more ambitious, minimum capacity costs for large period lengths
(around L) increase and get more expensive compared to the minimum capacity costs
short period lengths (around 0.5).

From the figure, for positive �, it can be seen that the minimum capacity costs first
decrease and then increase with T . The period length that yields the minimum capacity
costs, T ∗, is affected by both the specifications of lead-time performance constraint
and the specifications of contingent capacity cost structure. In Table 3, we present the
best period lengths T ∗ for all three lead-time performance constraints when α = 1
and � = 0, 0.5, 1.

From Table 3, we can see that T ∗ increases with � and decreases with the ambition
level of the lead-time performance constraint (when � > 0). If the lead-time perfor-
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Fig. 5 ACC(π∗(T ), T ) for increasing T under three lead-time performance constraints for cp = 1, � = 1
and α = 0, 1, 2, ∞ (from left to right the ambition level of the lead-time constraint increases)

mance constraints are more ambitious, the system appreciates the flexibility option
more and would prefer to tailor its capacity more frequently at the expense of higher
capacity costs. If the contingent capacity cost per unit time is same as the permanent
capacity cost per unit time, then operating with the smallest possible period length is
the right thing to do. The more expensive the contingent capacity costs become, closer
T ∗ value get to the L .

The decreasing rate of the opportunity cost, α, is also a very important factor that
determines the behaviour of the minimum capacity costs in response to the period
length. Two extreme values that α can take are 0 and ∞, respectively. When α = ∞,

the contingent capacity can be immediately assigned to another task if it is not deployed
by the system at the start of a period. Therefore, the cost burden of the lost oppor-
tunities disappears and ACC(π∗(T ), T ) behaves as if � = 0. On the other hand,
when α = 0, the assignment of the contingent capacity to another task is not possible;
hence, the lost opportunity cost during a non-used period of the contingent capacity
is not affected by the period length and it is a constant. In Fig. 5, minimum capacity
costs as a function of T, for � = 1, with different α, under three different lead-time
performance constraints are given.

From Fig. 5, it can be observed that ACC(π∗(T ), T ) decreases with increasing
α, since the contingent capacity gets cheaper for larger α values when � is posi-
tive. It can also be observed that as T approaches to zero, ACC(π∗(T ), T ) values with
0 < α < ∞ are closer to the ACC(π∗(T ), T ) values with α = 0, and as T approaches
to L , the ACC(π∗(T ), T ) values are closer to the ACC(π∗(T ), T ) values with α = ∞.

When α = 0 or α = ∞, ACC(π∗(T ), T ) behaves as a monotone increasing
function of T ; however, for other mid-values of α, ACC(π∗(T ), T ) has a more
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Table 4 T ∗ for different α with
cp = 1, � = 1 and under three
lead-time performance
constraints

α = 0 α = 1 α = 2 α = ∞
L = 10, γ = 0.9 0.5 5 4.5 0.5
L = 5, γ = 0.9 0.5 1.5 1.5 0.5
L = 5, γ = 0.95 0.5 1.5 1.5 0.5

U-shaped structure. Therefore, for these values of α, the best period length T ∗ is
not necessarily the smallest period length (T = 0.5), and is affected by the choice of
α. In Table 4, we present the best period lengths T ∗ for all three lead-time performance
configurations when � = 1 and α = 0, 1, 2 and ∞.

From the table, it can be seen that T ∗ first increases and then decreases with α.

When α = 1 or α = 2, we can see that T ∗ decreases as the lead-time performance
gets more ambitious; however, when α = 0 and α = ∞, the contingent capacity
cost becomes independent of the period length and therefore we have T ∗ = 0.5, the
smallest period length in our test bed.

5.3 Possible savings in operating costs for different environments

Under a single-level capacity policy, the effects of a change in the lead-time per-
formance constraint on the minimum capacity costs can be seen from the formula
provided in Sect. 5.1. As can be seen from the μL ,γ formula, an increase in the ambi-
tion level of the lead-time performance constraint requires an additional capacity to
be deployed.

Let ACC∗
i = ACC(π∗(T ∗), T ∗) be the best operating costs that can be achieved

under a two-level periodic capacity policy with the best period length T ∗ and a lead-
time performance constraint i for i = 1, 2, 3.

A two level periodic capacity policy not only reduces the average capacity costs,
but also may balance the increase in the ACC∗ when a more ambitious lead-time
performance constraint is used. In Fig. 6, we can see the percentage increases in
ACC∗ when a more ambitious lead-time performance constraint is adopted.

On the left, the percentage increases in ACC∗(100 × ACC∗
2−ACC∗

1

ACC∗
1

) are shown

when the low-ambition lead-time performance constraint (L = 10, γ = 0.9)
is changed to a more ambitious (medium level) lead-time performance constraint
(L = 5, γ = 0.9) and similarly on the right, the percentage increases in ACC∗(100 ×
ACC∗

3−ACC∗
2

ACC∗
2

) are shown when the medium level ambition lead-time performance

constraint (L = 5, γ = 0.9) is changed to an even more ambitious (high level) lead-
time performance constraint (L = 5, γ = 0.95) for the single level capacity policy, for
two-level capacity policy with cp = � = α = 1 and the two-level capacity policy with
cp = 1,� = 0. We can see that the usage of a two-level capacity policy can soothe
the drastic changes in ACC∗ upon the adoption of a different lead-time performance
constraint. Especially, when � = 0, i.e. when cc = cp, adopting a more ambitious
lead-time performance constraint would barely increase the average capacity-related
costs under a two-level capacity policy.

From this, we get the following conclusion: if the contingent capacity is not that
expensive compared with the permanent capacity, two-level capacity policies are quite
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Fig. 6 % increase in ACC∗ when the lead-time performance constraint is changed under single and two-
level periodic capacity policies

robust to the changes in the lead time or delivery performance target agreements in
terms of capacity costs.

Finally, we investigate how much savings that a two-level capacity policy can bring
compared to a single-level policy under different (�,α) settings. We are interested
in the percentage savings in the minimum capacity costs that can be achieved from
a two-level periodic capacity policy compared with cp × μL ,γ , which is the ACC∗
under the best single level capacity policy. Under lead-time performance constraint i
for i = 1, 2, 3., the percentage cost savings that a two-level capacity policy brings

can be found from 100 × cp×μLi ,γi −ACC∗
i

cp×μLi ,γi
. In Table 5, the percentage savings are

given for different functional forms (linear, inverse proportional and exponential) of
opportunity cost, oc(�, γ ) with � and α varying from 1 to 5.

From Table 5, it can be seen that the percentage savings that a two-level policy
can bring in ACC∗ increases with the ambition level of the lead-time performance
constraint, increases with α and decreases with � for all functional forms of oc(�, γ ).

Recall that � denotes the maximum value that the per unit time opportunity cost can
get, and α is a factor that affects the decreasing rate of oc with regard to T . The
benefits of periodic capacity flexibility are more tangible when the lead-time delivery
performance target settings are ambitious or when the contingent capacity is not that
expensive compared to the permanent capacity. Note that for all the three functional
forms, we can find instances where the cost performance of the best two-level flexible
capacity policy is worse than the cost performance of the single-level capacity policy.
These cases are typically the (�,α) combinations, where � is quite high in comparison
with cp and where α is quite small; thus, the oc is rather insensitive to the period
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Fig. 7 Number of instances (out of different 3780 scenario instances), where using capacity flexibility is
preferable even if there is a fixed flexible system cost rate FSC

length T . For these instances it is better to use the single-level capacity policies, or in
other words, set μl = μh = μL ,γ .

There can be an additional cost factor for operating a flexible capacity policy.
This cost is due to the system that needs to be in place in order to be able to deploy a
flexible capacity policy; such a system requires additional human capacity, information
and communication systems, as well as training and maintenance. We call this the
flexibility system cost (FSC in short). The flexibility system cost can be at most
cpμL ,γ − ACC∗, because otherwise the MTO system would prefer to operate with a
single capacity. In the following figure, we show the number of instances (out of 3780
instances, which extends the experiment in Table 5), where using capacity flexibility
is still preferred even in the presence of a flexible system cost rate.

From Fig. 7, it can be seen that the capacity flexibility can be affordable up to
0.6 × cp. There are around 200 instances where capacity flexibility is not preferable
even if FSC = 0. The number of instances that can afford flexibility decreases as FSC
increases and finally diminishes when FSC = 0.6. Especially, a dramatic decrease
occurs in the number of instances when FSC is between 0.2 and 0.4, which is due the
fact that most of the possible savings lie in that interval.

6 Conclusion

In this paper, we have studied a production system that operates under a lead-time
performance constraint, which guarantees the completion of a job order before a given
lead-time with a certain delivery performance target. We assumed that the demand
follows a unit Poisson distribution with rate λ. The service time requirement of a
job is assumed to follow an exponential distribution. This system is modelled as an
M/M/1 queuing system and the capacity level of this system corresponds to the service
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rate. In a fixed capacity system, the minimum service rate that satisfies a given lead-
time performance constraint can be found analytically. We studied flexible capacity
systems which adapt their capacity periodically in view of the number of job orders in
the system. For the sake of practicality, we focussed on a two-level capacity policy with
a permanent capacity which is always deployed, and a contingent capacity, which can
be supplied on demand. As the decision on the use of the contingent capacity is taken
at the start of each period, the contingent capacity provider does not know in advance
whether the reserved capacity will be actually demanded or not. This uncertainty on
the use of the contingent capacity creates an opportunity cost and it is reflected on the
contingent capacity costs per unit time. The period length T has a smoothing effect
on this opportunity cost, since the contingent capacity provider will have much more
flexibility to schedule the contingent capacity to other tasks for longer period lengths.
Therefore, we modelled the contingent capacity cost per time as a function of the
period length, of the cost effect of lost opportunities and of the time-leniency factor
of the contingent capacity to switch among different jobs/tasks.

For a given lead-time performance constraint and a permanent/contingent capacity
cost structure, the shop floor manager has to decide on the period length T, permanent
and contingent capacity levels and the workload level where the contingent capac-
ity should be deployed. This resulting minimization problem cannot be solved with
standard optimization techniques. Therefore, we have developed a procedure to create
problem-specific sets of values for the decision variables and next developed a layered
search method to find the best decision variables in these sets.

We finally conducted a computational study to investigate the behaviour of the
optimal period length and the minimum capacity costs under different lead-time per-
formance constraints and different permanent/contingent capacity cost structures.

From the computational study, we observed that, under a periodic two-level capacity
policy, the capacity-related costs can be substantially reduced compared with the
reference system which uses a fixed capacity to satisfy the lead-time performance
constraint. These savings can be particularly high for ambitious lead-time performance
constraints. Also, in flexible systems, the optimal period lengths are smaller for more
ambitious lead-time performance constraints. Moreover, we observed that under the
flexible capacity system, capacity-related costs are quite insensitive to variations in
the lead-time performance constraints. However, data from the computational study
show that the flexible capacity policy is not always to be preferred over the reference
fixed capacity system. First, under prohibitively expensive contingent capacity costs,
the capacity-related costs for the flexible system may exceed those in the reference
system. Second, even if the total capacity-related cost under the flexible capacity
policy is lower than the total cost under fixed capacity, the cost difference may not
be sufficient enough to compensate for the additional cost incurred for running the
flexible capacity system itself.

In this paper, we have investigated how a production system that faces a lead-time
performance constraint imposed by her customers can decrease her costs by employing
a periodic flexible capacity policy. An interesting future research question would be
how to coordinate the consequences of the production system’s capacity decisions
with the decision making of the customers on the lead-time performance constraint.
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This integration would yield to a decision feedback loop that hopefully iterates to a
better, more economical design of the system as a whole.
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Appendix A: Analysis of (X(t),Y(t)) process under constant service rate

If we assume that the production system employs a FCFS priority rule, we always have:
0 ≤ Y (t) ≤ X (t) ≤ K , since the number indicating the position of a tagged order
cannot exceed the total number of orders in the system. Also, because of the FCFS
policy, Y (t) is non-increasing in t, since the position of the tagged order decreases
one by one as the services of the orders before the tagged order are completed. When
Y (t) = 0, the tagged order’s service is literally finished. So, any ( j, 0) is an absorbing
state of the (X (t), Y (t)) process for 0 ≤ j ≤ K − 1.

Note that if a tagged order finds n − 1 orders in the queue upon its arrival at time t,
then (X (t), Y (t)) = (n, n) for all n > 0. As discussed earlier, because of the service
rate policy π, the service rate can change at the start of each period. Therefore, to
analyse the (X (t), Y (t)) process under policy π, we first need to characterize the
transient behaviour of the same process under a constant service rate of μ.

The state diagram of (X (t), Y (t)) under a constant service rate policy with μ can
be seen in Fig. 8.

Let Q be the transition rate matrix of the (X (t), Y (t)) process under constant
service rate μ. Since there are |Z | states in total, Q is a |Z | × |Z | matrix. Note that
state r = (r1, r2) means that there are r1 orders in the system and the tagged order’s

Fig. 8 State diagram of (X (t), Y (t))
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position is r2. Let Qr,s denote the transition rate from state r = (r1, r2) to state
s = (s1, s2). The Qr,s for the (X (t), Y (t)) process under service rate μ is as follows:

Qr,s = λ if s1 = r1 + 1 for r1 = 1, 2, . . . , K − 1 and r2 = s2 for 0 < r2 ≤ r1;
= μ if s1 = r1 − 1 and s2 = r2 − 1 for 0 < r1 ≤ K , r2 ≤ r1;
= −

∑

r �=m

Qr,m if s = r when r is a non-absorbing state;

= 0 for all other (r, s) pairs. (A.1)

After constructing Q for an arbitrary μ, the transient probability behaviour of the
(X (t), Y (t)) process can be analysed when μ = μl and μ = μh. Let Ul

r,s(t)(U
h
r,s(t))

denote the probability that the system will be in state s, (X (t) = s1, Y (t) = s2), given
that it was in state r in the beginning: (X (0) = r1, Y (0) = r2), when the service rate
is μl(μh) throughout time t.

We can find Ul
r,s(t)(U

h
r,s(t)) from Q with the help of the uniformization technique

(see, e.g. Kulkarni 1999 for details).
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